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A mathematical description of a mixture of a Newtonian fluid infused with
particulate solids is presented within the context of Mixture Theory, In the
absence of any thermal effects, the balance of mass and balance of linear
momentum equations for each component are averaged over the cross section of
the flow to obtain ordinary differential equations describing developing flow
between parallel plates. The resulting coupled equations describe the variation
of the average velocities and volume fraction in the direction of flow, and
represent a simplified approximate set of eguations which are used in
engineering applications.
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1. Introduction

Flowing mixtures consisting of solid particles entrained in a fluid are
relevant to a variety of applications such as fluidized beds and pneumatic transport
of solid particles. The importance of these complex flows is discussed, for
example, by Soo (1989, 1990a) and Marcus et al. (1990) who provide up-to-date
accounts of multiphase fluid dynamics and pneumatic conveying of solids. Many
of the articles published concerning fluid-solid flows typically employ one of two
continuum theories developed to describe such situations: averaging or mixture
theory (theory of interacting continua).

In the averaging approach (Anderson and Jackson, 1967; Drew and Segel,
1971) point-wise equations of motion, valid for a single fluid or a single particle,
are modified to account for the presence of the other components and the
interactions between components. These equations are then averaged over time,
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some suitable volume which is large compared with a characteristic dimension (for
example, particle spacing or the diameter of solid particles} but small compared to
the dimensions of the whole system, or an ensemble, Terms which appear due to
the process of averaging, which are not present in the equation being averaged, arz
usually interpreted as some form of interaction betwesn the constituents.
Constitutive relations to represent these interaction forces, as well as the stress
tensors for each constituent, are required to make the theory complete. A
comparison of recent formulations of multiphase flows is provided in two review
articles by Soo (1990b, 1991).

The second method of modeling multi-component systems is the mixture
theory. This theory, which traces its origins to the work of Fick (1855), was first
presented within the framework of continuum mechanics by Truesdell ( 1957). It
is a means of generalizing the equations and principles of the mechanics of 3 single
continuum to include any number of superimposed continua. The fundamenta]
assumption of the theory is that at any instant of time, EVery point in space is
occupied by one particle from each constituent, in a homogenized sense. Like the
averaging, the mixture theory also requires constitutive relations for the stress
tensor of each component of the mixture and for momentum exchange between the
components.

Recently Rajagopal, Massoudi and co-workers have proposed a
mathematical description for a flowing mixture of solid particles and a fluid within
the context of the mixture theory (Johnson ez al., 19914, b; Massoudi et al., 1999).
The mixture is modeled as a tWo-component mixture of a Newtonian fluid and a
granular solid, in a manner that the equations reduce to those describing a linearly
viscous fluid when the solid volume fraction goes to zero, and to those describing
a flowing granular solid when the fluid volume fraction g0¢s to zero. Boundary
value problems have been solved numerically for a steady, fully developed flow
of this mixture between parallel plates, through a pipe, and between twa rotating
cylinders (Johnson et al., 1991a, b; Massoudi and Johnson, 2000).

From a practical point of view, a dense suspension of solid particles in a
fluid shows different characteristics for different suspending media. For example,
Soo (1987) shows that a steady flow in a dense gas-solid suspension is not
expecied; the flow is often turbulent. Soo (1984) also indicates that “the minimum
suspension velocity of the same solid particles and the pressure drop are much
lower in a liquid than in a gas at similar temperature and at usefy] working
pressures”. Also, gas-solid mixtures have become increasingly important in many
of the chemical processes and cnergy related technologies such as pneumatic
transport, flow of pulverized coal in feeder lines to surfaces, and fluidized beds. In
suspensions of gas-solid flows, particle-particle interaction has also received much
attention (Soo, 1967).

Cross-sectional or radijal variations of flow properties, such as velocity
and density, are very difficult to measure in gas-solid flows. In many cases the
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measurements are restricted to cross-sectionally averaged quantities. A review
of measurement techniques for two-phase media is given by Hewitt in the book
by Hestroni (1982). The purpose of this paper is to apply the mixture theory to
a steady developing flow, and by averaging the equations over the cross section
of the flow derive equations governing the average volume fraction and the
average velocities of each component. First, we review briefly the basic
principles of mixture theory and discuss constitutive equations for the mixture
components and for the interactions between components. We then average the
balance of mass and balance of linear momentum equations over an appropriate
control volume.

The main objective of this work is to obtain one-dimensional equations of
motion for a steady developing flow of a mixture. For many practical applications
in gas suspension flows, or liquid suspensions, generally a one-dimensional
equation describing the overall momentum equation for the mixture is given (see
Soo, 1967, p.279, Eq.(7.7)). In these studies, the particles are treated as a dilute
phase. In a previous study, Massoudi ez al. (1999) provided the mixture momentum
equation for a fully developed flow of a dense mixture in a pipe. In this paper, we
will use the same constitutive relations to derive the appropriate form of the one-
dimensional steady developing flow of such a mixture.

2. Mixture theory

2.1. Introduction

Materials such as steel, water, or rubber are usually regarded as a single
continuum. In many applications such as a fluid containing particles, however, it
is useful to describe the two components as separate, interacting continua. A
general mixture theory, or theory of interacting continua, can be used to derive
balance equations for any number of continuous bodies occupying the same space.
The details and historical development of the mixture theory are found in review
articles by Atkin and Craine (1976), Bedford and Drumheller (1983), Bowen
(1976), several appendices in the recent edition of Rational Thermodynamics by
Truesdell (1984), and the book by Rajagopal and Tao (1995).

2.2. Kinematics and notation

The underlying assumption of the mixture theory is that the mixture may
be regarded as n superimposed continua, each having its own motion, At any time
t, each position in the mixture is occupied by one particle from each constituent of
the mixture. As in the case of a single continuum, each constituent of the mixture
is assigned an arbitrary fixed reference configuration. The motion of a particle of
constituent o is a one-to-one, invertible mapping denoted by
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Lo =Xa(xu*r) (2.1)

where X is the position of a particle of the 0 -th body or constituent in its
reference configuration, ¢ the time, and x, the spatial position occupied at time ¢
by the particle that was at X o 10 the reference configuration. In general, sufficient

smoothness is assumed in order to make any needed mathematical operations
correct. The velocity vectors corresponding to the motions are

Dt

e 2.2
P s (2.2)

D ‘ e :

—* denotes differentiation with respect to ¢, holding X, fixed. Note that there
is no sum on ¢ The densities of each component of the mixture, measured per unit
volume of the mixture, are written Pa - The mean velocity of the mixture V , 18
defined through

PV = Y povy (2.3)

o=/

where p is the mixture density, defined by

p= ipa ; (2.4)

o=y

Consider the special case of a two component mixture consisting of a Newtonian
fluid and a granular material, The fluid in the mixture will be represented by § ;

and the granular solid by §,.Let X ; and X', denote the positions of the particles
of §; and S, in the reference confi guration. The motion of the constituents is
represented by the mappings

*=pXn) ad x, =12(X,.1) (2.5)

where the subscripts 1 and 2 refer to the fluid and granular solid, respectively, The
kinematical quantities associated with these motions are

_Diy 5 _Daxs
Dt ’ 27 Dt

¥y {25:1

k]
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s 2%:_:‘ a5 =.%?, @7
L =§IL;’, #s =§:j, 2.8)
D, =-§-(L,+L§), D, =-§-(L_?+L§), (2.9)
W, =§(Lj -If) W, =-§—(L7 ~15) 2.10)

where v denotes velocity, a acceleration, L is the velocity gradient, D the
symmetric part of the velocity gradient, and W the Spin tensor,
Also, p;and p, are the densities of the mixture components in the current

configuration given by
Pr=0ps, py=vp, (2.11)

where p s 1is the density of the pure fluid, P, the density of the solid grains, and
v the volume fraction of the solid component and ¢ the volume fraction of the
fluid. For a saturated mixture ¢ =7-v. The mixture density, P is given by

P =Py +P3, ' (2.12)
and the mean velocity v of the mixture is defined by
Pm¥ =PV +Pav5. (2.13)

2.3. Basic equations
Balance equations for the mixture, and its constituents, may again be in

either integral form or in differential form. In the absence of any thermal, electric,
or magnetic effects, the conservation of mass for the fluid and granular material is

E% 5p;dV=J-F}cjdV, VP CQ, (2.14)

and
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D
Efgpzdbf:]‘ﬁczdv, VE CQ, (2.15)

where ¢; and ¢, are the mass supplies to the first

and second constituents,
respectively. These equations take the local form

Bt v oyp)=c, (2.16)
and
%-Hﬁu (pzvz)zcz. (2.17)
Let T; and T, denote the partial stress tensors of the fluid § ; and the
solid §, respectively. Then the balance of linear momentum for the fluid and solid

are given by

D N T
EJ‘F;pJuIdV "J-HP{ T, nyda+

(2.18)
+J.pr(9;bg+ff+cl,uj)d1f', VP, oo,
and
%fﬁﬂzvzdi’='faﬁf;nzda+ -
+jﬂ (025, - 1, e, )av, VP cQ,
or
P, %=dfﬂ}r+mﬁz S e, (2.20)
and
P, EE_]?'z di"Tzr +P2b; — fr + v, (2.21)

where b represents the external body force, and f;

represents the mechanical
interaction

(local exchange of momentum) between the components.
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The balance of moment of momentum implies that
T +T, =TT +17. (2.22)
The partial stresses need not by symmetric, however.

2.4, Boundary conditions

One difficulty in using the mixture theory is specifying the boundary
conditions. Boundary conditions can be prescribed based on the tractions acting on
the boundary, known displacements (or velocities) on the boundary, or some
combination of the two.

The difficulty in specifying tractions is that one must ultimately determine
how much of the total traction is supported by each constituent. Rajagopal er al,
(1986), Rajagopal and Tao (1995) and Tao and Rajagopal (1995) have addressed
this issue for a certain class of boundary value problems. The problems considered
here belong to the second class in which the velocities are specified at the
boundaries, for instance the adherence boundary condition (Massoudi er al., 1999)
or a slip condition (Massoudi and Phuoc, 2000) that is specified on the basis of
experiments or observation.

3. Constitutive equations

We will give a brief description of the models that we intend to use. Fuller
explanations are given in our other papers, In the absence of any thermal and
chemical effects, for a purely mechanical system, the constitutive quantities which
are to be modeled are the stress tensors and the interaction force. We assume that
the fluid and solid phases are dense enough to be modeled as homogeneous
continuous media. Based on our knowledge of modeling in the theory of granular
materials, it would be natural to assume that all the constitutive functions depend
on (Rajagopal er al., 1990)

DJ‘: p.?: vp}r va:vvpf+ vvpz: "’}_VET DI! Di" (31)

and possibly other vectors and tensors. Then restrictions can be obtained using the
second law on the forms of the constitutive relations for the constituents (Shi e al.,
1981; Atkin and Craine, 1976). Here, we discuss an alternative approach, which
18 to postulate the constitutive expressions by simply generalizing the structure of
the constitutive relations from a single constituent theory. In general, the
constitutive expressions for T s and T, depend on the kinematical quantities

associated with both the constituents. However, we assume that T, and T, depend
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only on the kinematical quantities associated with the solid and fluid, respectively,
This assumption is sometimes called “the principle of phase separation” and wag
first used in the mixture theory by Adkins (1963a, b).

In the majority of fluid-solid mixtures, the fluid is either g gas or water,
Therefore, it is appropriate to assume that the fluid behaves as a linearly viscous
fluid, whose constitutive equation is

Tf=[_P(ﬂf)+}"J'G:'1Jrrﬂ:]f+2“fﬁjjjnj (3.2)

where p is the fluid pressure, A - and p  are the viscosities, D, is the symmetric

part of the velocity gradient for the fluid defined in Eq.(2.9) and I is the identity
tensor. If the fluid is incompressible, then P is one of the unknown quantities in the
problem that would have to be calculated. If the fluid i compressible, an equation
of state is needed. In general P Ay, and p s are functions of p, and temperature,

There are basically two different ways of deriving a constitutive relation
for the stress tensor of granular materials — the continuum approach and the
statistical approach. We use the continuum approach in our analysis. In this study,
We assume that the stress tensor for the granular materials is given by (Rajagopal
and Massoudi, 1990)

T, =[E'a 032 )+ﬁ_,(ﬂ2Jgrad P, gradp, +B-’-’ @E)Irﬂz]f+(3~3.}
+Egcoz)ﬂz +B4 (oz)gradﬂz ®gradp,

where denotes the scalar product of two vectors and ® denotes one diadic product
of two vectors. The spherical part of the stress in Eq.(3.3) can be interpreted as the

solid pressure P . The material modulj E ; and 34 are material parameters that

reflect the distribution of the granular particles, and Bﬂ plays a role akin to
pressure in a compressible fluid and is given by an equation of state. The material
modulus ,ﬁz Is & viscosity akin to the second coefficient of viscosity in a

compressible fluid and ﬁ 3 denotes the viscosity (i.e., the resistance of the material

to flow) of the granular solids. Recently, Rajagopal and Massoudi (1990), and
Rajagopal et al. (1994) have outlined an experimental/theoretical approach to
determine these material moduli. Based. on the available experimental
measurements of Savage (1979), Savage and Sayed (1984), and Hanes and Inman
(1985) and the computer simulations of Walton and Braun (1986a,b), it is clear that
granular materials exhibit normal stress effects. The above model (Eq. (3.3))is a
simplified version of the mode] proposed by Rajagopal and Massoudi (1990)
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which predicts the possibility of both the normal stress differences. Furthermore,
Boyle and Massoudi (1990), using Enskog’s dense gas theory, have obtained

explicit expressions for the material modulj B, through B, .
A mixture stress tensor is defined as (Green and Naghdi, 1969):

Tszj"'Tz (3#4:!
where

i =(J—V}Tf and Ty=T,, (3.5)

so that the mixture stress tensor reduces to that of a pure fluid as v — 0 and 1o that
of a granular material as ¢ — 0." T, may also be written as 7', vT, where T,

may be thought of as representing the stress tensor for some (quite densely packed)
reference configuration of the granular material. Note that our choice for the partial

slresses are symmetric,
The mechanical interaction between the mixture components, Ly 18

written as (Johnson et al., 1990)

I
f]r - n"’i}g'fﬂdv +A2F(‘L")\(F2 "'PI }+ ij'(ﬁrrﬂf)_;.ﬂf (]J'2 =¥; )+ {3‘6}
+Av(W, ~-W, X"z —v )+ Asa,,

where a,,, isa properly frame invariant measure of the relative acceleration between

the mixture components and F (v) represents the dependence of the drag coefficient
on the volume fraction. The terms in Eq.(3.7) reflect the presence of density
gradients’, drag, “slip-shear” lift, “spin” lift, and virtual mass, respectively. Miiller's

'Note that G — 0 is equivalent to v —s J only in a saturated mixture. Thus the theory allows
for the mixture tending to 2 pure granular material without v— J but to some value Vo

strictly less than unity, usually referred to as the maximum packing fraction. We are
interested here, however, in the case when there is a sufficient amount of both the
constituents and hence we are not close to either of the limiting cases. Further, in keeping
with the usnal weighting procedures in multiphase flow we shall represent T, as

T, =(—v)T, +vf,, (3.7)

where 7, is discussed above,
*The actual form of this interaction should include the terms o jgradp; +o grad p, where
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(1968) work indicates that a term of the form A; grad v must be included in the
interactions in order to get well-posed problems. The term multiplying 4; is a

generalization of Saffman’s (1963, 1968) single particle result first proposed in this
form by McTigue et al. (1986). One of the earliest studies examining the effect of lift
force is discussed by Soo (1969) and Soo and Tung (1972); Massoudi (2001)
discusses the importance of lift forces in multiphase flow analysis and Massoudi and
Halow (2001) present the effact of Iift forces in a Couette flow of a mixture,

4. Averaging

4.1. Conservation of mass

Consider a box shaped fixed region R in three-dimensional Euclidean
space of volume V bounded by a surface 9R of a. The box has unit depth in the 7
direction and surface dR,,dR, ,OR; and R, as indicated in Fig.1. All equations are
postulated at the current time 7 and all field quantities are functions of x and .

n=j
A
! —
I &5
—_— W 7R, i T ¥
i I i
n=-=i —_—
—_— < <R, R R l_,_ n=j .
i |
] .
e : !
|! Y n= —4
I_‘_ =
Ax

Fig.1. Control volume.,

; and o, are constants. If we assume that the system is a saturated mixture with
incompressible components, this expression simplifies to Ajgradv where A =a, —a,.
Since no information conceming the coefficients o, and 2 is available and a term of the

same form arises in the balance of linear momentum in the granular solid stress tensor, this
term will be neglected in the present work.
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The appropriate balance of mass for a control volume is given by
d
é;fﬂﬂuffv:‘_faﬁpﬂ(va'H)dﬁ‘f‘jﬁﬂqdv (41}

where p,, is the density of the o — 74 constituent, v, is the velocity, n is the unit
normal to the surface and Ce 1S the mass supply. Suppose there is no chemical
reaction, ie,, Ce =0 and that the flow is steady and unidirectional, i.e.,

Vg =V, (x, ¥, z)i. Equation (4.1) implies that

[anPelbg -n)da=0. (4.2)
Denoting the entrance boundary as 3R ; and the exit as dR, we find

~ [ ar, Pavda+ [ aryPapada=0. (4.3)

Let dR; be located at x and 0R, be located at x+ Ax ., Also let us suppose that the
Ccross-sectional area is constant. Then (by the mean value theorem?)

faﬁj PeVoda=poy A (4.4)

where the asterisks represent some average value on JR,;. Using Taylor’s

expansion
L] ¥* d L 3 =
J- 3R, PaVada=pov A+ ;{;Gjﬂvqﬂ)ﬁx. (4.5)
Thus Eq.(4.3) implies

pr POTV 5

*Mean value theorem for integrals: if fis continuous on [a, B] then there is a number ¢ in
[a, ] such that

[£G)dx=(-a)r(c)

a
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4.2. Balance of linear momentum for the fluid

The balance of linear momentum for the flujd IS, in general

éa?fgﬂﬂ’;d"=‘fagpf’”;("g -n)da+

+[2n T da+ | (0,5, +fy e, )av

where R represents the contro] volume, JR Tepresents the surface of tha contro]
volume, p is density, v, is velocity, b, is the body force, J1 is the interaction

between the components, T is the stress tensor, ¢, is the mass supply, and  is the

unit normal to the surface of the contro] volume, -
The subscript I refers to the fluid component. With the assumptions of Steady flow
and no chemical reaction the above eguation reduces to

[3k0v,00; ) da = [T da+ [ w06+ £, )av . (4.8)

We now derive the averaged form of Eq.(4.8) by considering each term
'individual!y.

Convective term
v, = v(x, y)i, and vy =:¢(x.y}i, | (4.9)
then
2, 2.
[arpp, b, -r:)daz-faﬁfpjv ida+ [ pvida. (4,10

The Mean Value Theorem implies that
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. [ = d [ % 5
faﬁzpjvzs dax[pj(v )?A+-d}-[p36r )ZAJMJ:. (4.12)
Combining Egs.(4.10), (4.1 1) and (4.12) gives the following result
[ nfa :
faﬁpvj(vf-n)ch:Ex-[pf(v )ZA}.’BJI, (4.13)

Body forces
The effect of the body force can be averaged over the control volume to vield

[ kPsB1aV =3B, AAx. (4.14)

Interactions

In general, the interactions between the mixture components will include density
gradients, drag, lift, and virtual mass. We shall neglect lift and density gradients
but consider interactions due to drag and virtnal mass as they are often more
important for the flow of slurries. Thus the interaction term has the form

where @, isa frame-indifferent relative acceleration given by

a,. =[Dv? —(grad UEXVE —v;)J—J—

e (4.16)
Dy,
e tgrad vty =9, J)
- lman o, )
With our assumptions about the velocity fields the interaction force vector becomes
(cx (.u—v)+[! v@-—u—ai
g 6l ax ox
Fy= 0 (4.17)
0

and



Stress tensor

The fluid stress tensor is given by

TJ,=[-—pf+lerJI+2pDJ. (4.19)
Following the Same procedure ag above, we have

fa,ze[‘Pf +}bf-"ﬂl,]hzda= ;[ av]

pf. -f".;ué:r- Ida +
dv | dv
+fﬂﬁz[ P, +la +fﬂf:‘[ Py +la da + (4.20)

_faﬁ'[ pf-i-l'—— da

where

dx

f [ P, +lgu]dd-[-—pf +AT— L J.‘l (4.21)

and

E:-‘.r dx

av .,av d R Vhs
S0 that

d s  asOV” .
I [pf-Fl Jma!a I[ P+ —a"—-]mm

29

- (4.23)
+ [ pJ,.-i-;' ]_/da fa [ pf+l

Next,
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v d
faRZ;ADnda-—-_[aR Ep. Ida.f_j&R 2;.1 pa’a faR ug—xda+
Y (4.24)
+IER m’cz jaR u—-jda-l-J‘aR p.a—-_;da
[ar,2 L 4.25
R ox i
dv « OV « Ou”
P—da=2n"— A+ 2> :
J.BRE ”Eir 4=zl E A rir[ L A Jﬂx (4.26)

The shear force of the fluid on the u

pper and lower surfaces of the control volume
is defined as

a a dv v
F, —Tffb:-—faﬂtpé;da-faaugda (4.27)

and

J.ERZ,L!D;nda =?j;[2p'%,4}ﬁxf+
(4.28)

Thus the balance of linear momentum for the fluid phase in the x-direction

becomes
d . OV e V"
—Ip; =— AAx+—| 2
2P ) A [pf aJ&xaﬁx[“m
(4.29)

% e aut " dv®
—Tfﬁx+pf(bj)xAﬁx+{a3(u =¥ )La [u ok _S;HAM
and in the y-direction, we have

gv gv

BR:[_P +A—]da-+ aﬁ': pI—Ll ].cfa _[ERH da +
Jan|=py+rg; | da-] % s

+ J o, u%dﬂ +0; (5’; )y Adx=0.
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4.3. Balance of linear momentum for the granular materials

The balance of linear momentum for the granular materials is

% szwzwz‘jaﬁpzi’z("z -rz)da+
+[saTTnda+ [ (o, 5, - Frtey,)av,

where R represents the control volume, gR Tepresents the surface of that contro]
volume, p, is density, v, is velocity, b, is the body force, St is the interaction

between the components, T, is the stress tensor, ¢, is the masg supply, and n is
the unit normal to the surface of the contro] volume, The subscript 2 refers to the

[ sePsvs b, n)das [saTinda+[ (o5, - £,)av. @32
The solid stress tensor is given by
T, =[—- P, +ﬁ2rrﬂz ]I +Bjﬂz +l§_¢gradv ® gradv (4.33)

where
pi= ‘Eu ~B;grad V-gradv . (4.34)

The following results are analogous to those for the fluid
[ 3207, 0, -n)da= f;[p; (u*)‘zAJ&n', (4.35)

[ k02bdv =plBans, (4.36)

jgf,dv a;(u*w*)m;(w —=u —a:i:HAM, (4.37)
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I { P, +ﬁ25r—:'fndau-j—x[ P, ﬂi-ﬁt :JA&H

(4.38)
+_[ER!: Py +Bza J’d‘z J.Eﬂb[ da,

#

-~ d g du
D nda=—
Iaﬁﬁi Qg dx{ﬁj dx

AJM - Ts.ﬁ.xi +

(4.39)
I .
EJBR B a},ﬂiﬂ* _[BR ﬂg 5 = jda
where T, is defined in an identical fashion to T 7 in Eq.(4.27) through
By ay

The solid stress tensor has an additional term not found in

the fluid equation. To
simplify the following calculations, we define

M = gradv @ gradv, (4.41)

which for our assumed form of the density field becomes

(2 2o,
ox ox ay
avav [ oy
M) aest 2 ol. 4.42
dx dy [By] 42
0 0 fJJ

The additional term in the solid balance of linear momentum is
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3 3 2 2
faR ]34 % 8 __rda+faR ﬁ‘;[ ] jda fﬂﬁbﬁff( }r] Jda. cont.(4.43)
Proceedmg as befcrf:, we have
2 v 2
= W
J‘ Ry -84( ] da = 54(3‘} 4, (4.44)
X
Y al.fav)
el OV sw| OV
da = — | A — | A |Ax 4.45
fa;fzﬂg(a] B{ax] dxﬁ*‘(aJ (4.45)
The shear force of the solid on the upper and lower surfaces of the contro] volume
due to the normal stresses is defined as
dv av = dv dv
=0 B3 oy da= [ an,B oo da (4.46)
and
d| sl vt ¥
[ oxBMnda=2pz[ " |, Axi -, Axi +
dx ox
= dv dy i = gv gy
| gy B 33y /% [ ag, Busr 5, Jdat (4.47)
2 2
faﬁ Bs.t( ] Jda— J‘ER B4( _}'J Jda.
Thus the balance of linear momentum in the x-direction becomes
i[ptﬁi*y J d p *au AAx+
de 2 5
2
/8 B*E{A Ax—t,Ar+ -2 gl AV AlAx—1 Ax+ (4.48)
fir 3 a‘r F * fix 4 ax n 2

+ p;bxﬁﬂx—[a; (u* — v*)+-ﬂc;(v* E:_: —-u’ -E,—F—HAM
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and in the y-direction, we have
5 O % O 7 . 53,
J‘ER{“Q_,. +ﬁz E{Jdﬂufaﬁb[‘ﬂj +F32 EJ@_EIBR;B-? é;dﬁ
] s Ou = dv gy = dvav
o 5_[ oR, iF gdﬂ “I aR, B, ﬁg'ajd“ +f 3R, B, E—.E—a;da + (4.49)

5[], JEQW “b Alx=
+IHR’B¢{&? “‘jaﬁbﬁ4 'a_y' 2P0 Alx=0.
5. Summary and conclusions

Combining Eqs.(4.13), (4.14), (4.18), (4.23), (4.28) with Eqs.(4.8) and
(4.35)+(4.39), and Eq.(4.47) with Eq.(4.32),

and treating the averaged values for
the variable as the variable, yields (in the x-direction)

e s )

+ ——T.+pih_+
2 i Iz
dx dx A (5.1)
t( L m) L] #du* *dv‘
+'[13M -y +C{5 v ji—x—‘—ﬂ Tix__ ;

I i ax AV dEVY ]

-_ET" -rpsz+2ﬁ¢, T dx-? ‘—Efﬂ‘f‘ {52)
sz i e

—'113 W= ﬂ.ﬁ 1) Ex—"‘ﬂ 5

(5.3)

3y o
T }, It
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A it
7, 2% o, 5, da. (5.5)

In many applications (Soo, 1967), the equation of interest is the fluid-particle (or
mixture) momentum equation. This equation is obtained by adding Egs.(5.1) and
(5.2)

Pl oo S O

e a) T )

which can be rewritten as

i-(ﬂfv‘z )+£[-GJEH*2J= oy +2)s

+(}._*+2w)‘iiv*+([§; +E;)d2”*——i—(rf+fsJ+ (5.7)

2

direction is not included in the averaged equations. Of course, the terms in the y-
direction are such that the pressure field adjusts itself to satisfy the governing
equations. Soo (1967, P-279, Eq.(7.7)) presents the overall momentum equation for
a mixture composed of a N ewtonian fluid and a dilute phase consisting of solid

du sdu, 4p ¢ .
P * ppuy—2 G i -8)

where 7 is the perimeter of the duct with area A and T,, 18 given by

2
42 pu
Cf = "I.'w ‘-2—- : {59}
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Obviously, the fact that particles are not interacting with each other makes Eq.(5.8)
different from our equation for the mixture, Eq.(5.7). However, we can see that if
weset B, =f; =0 (ie., no shear or bulk viscosity for the solid phase), and B, =0

(i.e., no particle distribution factor), then 7, = Ty =0, and Eq.(5.7) reduces to
d = =3 d ¥ &2 dP
= Vv + — =——
dr biv?) d b, dx

+ (l* +2”*)i:’*_2_ ' &]}‘ -F-F);)E’x

dx

(5.10)

where we have defined P = P} + p; . Therefore, it is clear that if the mixture is

reated as a dense suspension, where the particle phase is also treated as a
continuum phase given by an appropriate constitutive equation for the stresg tensor,
then the mixture momentum equation will contain additional terms due to the
viscosity and normal stress coefficients.
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Nomenclature

a - acceleration vector
@ym —Telative acceleration between components

A; — interaction coefficients, =/ to 5

b — body foree vector

D - symmetric part of the velocity gradient
fr - interaction force vector

F  —deformation gradient

F —volume fraction dependence of drag
£ - gravitational acceleration

I —identity tensor

L - gradient of velocity vector

p = Tluid pressure
Ee - Reynolds number

T —stress tensor
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¥ —velocity vector
W —spin tensor
X - position vector
B: - granular solid coefficients ((=0-4)
K - mapping function
@ —volume fraction of fluid
A; —second coefficient of fluid viscosity
L —first coefficient of fluid viscosity
v —volume fraction of the solid
p —density

Subscripts

lLf —referring to the fluid phase
2,5 ~referring to the solid phase
m  —referring to the mixtyre

Superseripts

T - transpose
— dimensionless quantity

Other symbols

Ve —divergence operator
V' — gradient operator
ir —frace of a tensor
@ -~ outer product
s —dot product
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